Get Latest ECE/EEE Projects in your Email

State of the Art in LP-WAN Solutions for Industrial IoT Services


The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN), is explored. By means of a cellular-type architecture, LP-WAN–based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks.

Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things) networks and services.


Current enabling technologies for IIoT services can be divided into short-range and long-range approaches. The main impediments found to implement sustainable cost-effective IIoT solutions are related to: (i) network management costs; (ii) scalability and network organization; (iii) edge-nodes’ dimensioning and power efficiency; and (iv) coverage. In the following, these points are identified and reviewed for different short-range and long-range technologies that have been employed so far for supporting IIoT applications. Please note that although the list of solutions provided in this section does not intend to be exhaustive, it permits us to identify the principal challenges in deploying these types of M2M networks.

  • Short-Range Connectivity
  • Long-Range Connectivity


Figure 3. Principal characteristics of IIoT-enabling technologies. (a) Data rate and coverage range; (b) Energy efficiency and terminal and connection cost.

Figure 3. Principal characteristics of IIoT-enabling technologies. (a) Data rate and coverage range; (b) Energy efficiency and terminal and connection cost

Recently, a number of different platforms following the LP-WAN paradigm have arisen. These proposals aim at gathering both the long transmission range provided by cellular technologies and the low energy consumption of WSNs (Figure 3). Many LP-WAN proposals are at an early development stage and others have already begun their architecture deployment. LoRaWAN, Sigfox, and Ingenu are currently the LP-WAN platforms with the greatest momentum and they have been reviewed in recent works.


As in the rest of the world, the rollout of LP-WAN platforms in Spain is in its beginning stages. Currently, there is one solution with a clear advantage over the rest: Sigfox. After reaching an agreement with the network operator Cellnex Telecom, Sigfox has reached a count of more than 1300 base stations covering the Spanish territory. Thus, Sigfox employs the already-deployed Cellnex (previously known as Abertis Telecom) infrastructure. This strategy of partnering with a big network operator has been also adopted by Sigfox in other countries such as France (TDF) and the Netherlands (Aerea). Regarding the Spanish case, Sigfox has focused on security services (e.g., to connect alarm systems to the cloud) and is beginning its expansion to other niche markets (e.g., in smart farming and precision agriculture).


We are witnessing the dawn of LP-WAN solutions for wide and overcrowded M2M networks and IIoT services. There are differentiating characteristics such as the data rate, power consumption, or cost that work against each other. Consequently, none of the existing platforms provides the best performance for all of these requirements. Thus, once the needs of the service to be deployed are specified, the LP-WAN solution that matches best will be chosen.

  • Focusing on management costs, most platforms offer the same model to their customers: the subscriber assumes the expenses of deploying the edge-network and pays a fee to the LP-WAN operator for managing and making all the collected data accessible. This is an adequate solution, as the issues and expenses related to the information management process are avoided by the subscriber.
  • In terms of network organization and the edge-nodes’ dimensioning, it seems that the star topology allows an easy and straight connection from each end-node to the base station. However, although all the cited solutions claim high system scalability with base station capacities of thousands of simultaneously connected nodes, other topologies such as star-of-stars or tree architectures could improve this scalability at the expense of employing special nodes (concentrators) and increasing the edge-network complexity.


This article discussed different enabling solutions for the imminent IIoT era. Taking advantage of these technologies will make companies ready to tackle future large-scale challenges, improving business productivity at several levels. In addition, the new networking solutions presented here are also focused on reducing power consumption in order to construct more efficient and sustainable architectures. The LP-WAN paradigm seems to be a promising response to the limitations showed by current technologies, but we are just at the very beginning of the IIoT explosion, so it will be necessary to remain vigilant to the new challenges that the upcoming M2M-based services will pose.

Source: Universidad Politécnica de Cartagena
Authors: Ramon Sanchez-Iborra | Maria-Dolores Cano

Download Project

For Free ECE/EEE Project Downloads:

Enter your email address:
( Its Free 100% )

Leave a Comment

Your email address will not be published. Required fields are marked *